Quasi-Eulerian Hypergraphs
نویسندگان
چکیده
We generalize the notion of an Euler tour in a graph in the following way. An Euler family in a hypergraph is a family of closed walks that jointly traverse each edge of the hypergraph exactly once. An Euler tour thus corresponds to an Euler family with a single component. We provide necessary and sufficient conditions for the existence of an Euler family in an arbitrary hypergraph, and in particular, we show that every 3-uniform hypergraph without cut edges admits an Euler family. Finally, we show that the problem of existence of an Euler family is polynomial on the class of all hypergraphs. This work complements existing results on rank-1 universal cycles and 1-overlap cycles in triple systems, as well as recent results by Lonc and Naroski, who showed that the problem of existence of an Euler tour in a hypergraph is NP-complete.
منابع مشابه
Eulerian and Hamiltonian dicycles in Directed hypergraphs
In this article, we generalize the concepts of Eulerian and Hamiltonian digraphs to directed hypergraphs. A dihypergraph H is a pair (V(H), E(H)), where V(H) is a non-empty set of elements, called vertices, and E(H) is a collection of ordered pairs of subsets of V(H), called hyperarcs. It is Eulerian (resp. Hamiltonian) if there is a dicycle containing each hyperarc (resp. each vertex) exactly ...
متن کاملEulerian and Hamiltonian Directed Hypergraphs
Let H = (V ,E) be a directed hypergraph, also called a dihypergraph. Each vertex v ∈ V is incident to some hyperarcs in E . Conversely, each hyperarc E ∈ E is incident to some vertices in V . H is Eulerian if there is a dicycle C such that each hyperarc E ∈ E appears exactly once in C. Similarly, H is Hamiltonian if there is a dicycle C ′ such that every vertex v ∈ V appears exactly once in C ....
متن کاملHypergraphs, Quasi-randomness, and Conditions for Regularity
Haviland and Thomason and Chung and Graham were the first to investigate systematically some properties of quasi-random hypergraphs. In particular, in a series of articles, Chung and Graham considered several quite disparate properties of random-like hypergraphs of density 1/2 and proved that they are in fact equivalent. The central concept in their work turned out to be the so called deviation...
متن کاملQuasi-Random Hypergraphs and Extremal Problems for Hypergraphs
The regularity lemma was originally developed by Szemerédi in the seventies as a tool to resolve a long standing conjecture of Erdős and Turán, that any subset of the integers of positive upper density contains arbitrary long arithmetic progressions. Soon this lemma was recognized as an important tool in extremal graph theory and it also has had applications to additive number theory, discrete ...
متن کاملQuasi-random hypergraphs revisited
The quasi-random theory for graphs mainly focuses on a large equivalent class of graph properties each of which can be used as a certificate for randomness. For k-graphs (i.e., k-uniform hypergraphs), an analogous quasi-random class contains various equivalent graph properties including the k-discrepancy property (bounding the number of edges in the generalized induced subgraph determined by an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 24 شماره
صفحات -
تاریخ انتشار 2017